
1: 
yfi1.S 59 

Rational's Experience Uiing Ada1 for Very Large &item 

Jarhes E. k c h e r ,  Sr. 
MicKae! T. Devkin 

1. Introdoctton 

creativity. !t has been described w one of the most complex activities undertaken by 
Man. The  risks dsociated with such an effort are increased by its size and by the 
involvement of participants from different organizations, locations, and, possibly, 
countries. By any measure, the software for Space Station ranks among the most 
ambitious projects ever undertaken. 
Considerable research effort has been devoted to solving the problems involved in the 
constructioq of such large systems. Unfortunately, while puch  of the resulting 
technology 19 available in the literature, it b not widely used [lS]. Reducing theory to 
practice is always difficult; the rate a t  which this has been accomplished for software 
seems particularly discouraging. These difficulties prompted the Department of Defense 
to start the STARS rogram 171 and to establish the Software Engineering Institute 131 to 

. The develo ment of very large software system challenges human intellect and 

focus on improving t g e state of practice. 

2. Mothation 

In 1981, Rational2 set out to produce an interactive environment that would improve 
productivity for the development of large software systems. The mission was to create 
an environment that supported high-level language development of systems developed 
using modern software engineering principles. This mission wm built on the belief in 
recent advances in programming languages, methods, and environments. 
In designing the Rational objecboriented design [4], abstraction IS], 
information hiding ( 5 ,  and were important both in terms of use in our 

rototyping Ill] was of particular importance design and as metho d s to 
because it gave a c c w  to the advantages of the environment and its component 
technologies, at  the earliest possible time. 
The language to be sutported was Ada. This was an easy choice. Ada appeared to be 
the latest and best enpee red  language for budding large systems [l]. In particular, the 
separation of specification from bodies appeared to offer a real advantage: it allowed the 
language to be used during design, as well as implementation, and it supported a realistic 
opportunity for reusability (81. 

Experience with research programming environments had shown that access to a set of 
integrated facilities could greatly leverage the ability of individuals to produce systems. 
The most widely used of these environments EU ported interpretive or dynamically typed 
languages, most notably Lisp [i3]. Researct efforts to support more appropriate, 
strongly typed languages were interesting, but they centered mostly on interpretive 
implementations for student subsets [2, 141. Even so, the benefits of these system 

-~ 

'Ada is a registered trademark of the U.S. Government Ada Joint Program Oflice. 

'Rational and Rational Environment are trademarks of Rational. 

n . s r  



suggeated the feasibility of building a compilation-brsed environment for team 
development of large systems. 
From the outset, it WM clear that the Environment itself waa an example of the kind of 
system whose development it wm intended to facilitate. Although it would not be 
possible to use the Environment early in ita construction, the other central techno10 
themes,. language md methods, were still available. To support these before t e 
environment was functional, a ret of tools wm constructed to rupport Ada development 
in a conventional, batchsriented manner, We don’t think of the resulting tool set as an 
@environment@* however, it  doea constitute an APSE in the Stoneman sense 121, it 

compilation system. The development of t E b tool ret involved more than 300,OOO lines 
of Ada code; building it helped to improve our understanding of the problems and 
opportunities associated with the evolution of the Rational Environment. 

B 

includes a validated compiler, urd it b com arable to other commercially availab I e Ada 

8.  Earhnment Churckrfstfu 

The Rational Environment is the operating software for the Rational R1000, a t ime  
shared computer im lementing a proprietary, Ada-oriented architecture. It is written 
entirely in Ada, wit E considerably less than 1% of its statements being machine code 
insertions. 
The Environment fs the system interface; all users of the system use the same facilities. 
Although general-purpose computing is well supported, the system is designed to be used 
by projectrelated personnel with some interest in and facility with Ada and 
programming language concepts. 

1.1. Ada Framework 

The Environment directory rtructure is hierarchically organized. Names in this 
structure are Ada simple identifiers separated by periods, bs with Ada qualified names. 
This rtructure contains a variety of objects of a variety of system and user-defied types. 
One common object type is Iile; another is Ado. Files resemble files on any other 
system. Ada objects are more interesting. 
An Ada unit under development is an Ada object. The name of the object is the name 
of the unit that  it represents. Ada objects corresponding to library units have two parts: 
visible part and body. Separate subunits or Ada units are children of their parent Ada 
unit and are named tu such. As a result, the same name is used to refer to the unit 
when it is edited, compiled, and executed. All of the units residing in the same directory 
substructure constitute an Ada Library, and there are provisions for creating libraries, 
hierarchical or otherwise, from multiple simple libraries. 
The treatment of Ada units as typed objects is central to the design of the Rational 
Environment. In addition to supporting an objectoriented view of the unit throu hout 
the compilation process, the storage of the program object as an attributed D h A  
tree [SI provides access to the program structure in a way that makes a variety of 
interesting facilities available. These include Ada-specific editing operations, incremental 
cornpilation, compilation ordering and interconnection facilities, and direct execution of 
Ada statements. 

B.2.5.2 



. 

8.a. Compflatfon 

The  traditional compilation model involves reading fides of program source into a series 
of tools that produce various processed f o r m  of the original program. During this 
process, new objects with new names are created and the user is forced to track the 
correspondence between the current program text and the current executable version. In 
contrast, the Environment cornpilation model centem on Ada units m definable objects 
that  are transforme by editing and compilation between three principal states: source, installed, and coded. 4 
A source unit has been parsed, but has yet to be compiled. It isn’t just another form of 
Tie: it’s a DIANA tree sufficient to support interactive syntax checking and to perform 
operations that depend on the structure of the unit. Maintaining this structure makes it 
convenient to keep units syntactically consistent at all times, Featly reducing the time 
lost trying to compile units with syntax errors. Ada was expkcitly designed to have a 
declarative structure that facilitates the expression of complex system interaction- in a 
way that can be statically checked. Installed units have passed the semantic checks 
necessary to assure that they are consistent, both internally and with units that they 
reference. Getting units semantically consistent and keeping them consistent is one of 
the major programming activities in Ada development. Once a unit is installed, coding 
is just a matter of time and computation required to get into execution; there is DO 
intellectual effort involved.. Coded units are ready for execution. Programs are intended 
to be executed, so this is the final state in the com ilation process, if not the most 
interesting one. 
compilation effort, increasing interactivity during one of the challenging parts of the 
programming process. 

The existence of separate installe r f  and coded states reduces the 

The Environment supports a spectrum of compilation paradigms: 

0 Batch installation and coding with fully automatic ordering 
0 Editor-based installation and coding of individual units 
0 Incremental, statement/declaration-level changes to installed units 

All these paradigms make use of the system’s knowledge of the structure of the units 
being processed to determine correctness and compilation ordering, Incremental changes 
to compiled units has an immediate intuitive appeal regardless of the language involved. 
Making small changes and only recompiling what hss actually changed reduces both the 
total compilation effort and the time between a change and getting the benefit from that 
change. This is particularly important for Ada: getting immediate feedback on the 
legality of a change makes it possible for the developer to use the declarative structure 
more effectively in evolving the program. Early detection of problems minimizes wasted 
effort. 
Another benefit to be derived from incremental operations is the ability to add new 
functionality to a specification with minimal compilation effort. The goal is to add 
declarations to the visible part of a package without allowing illegal changes or requiring 
clients of the package to be recompiled - all of the benefits of strong typing without the 
consequences. Providing this facility was one of the more interesting technical challenges 
in building the Environment 1151, but it was certainly worth the effort. 
Immediate semantic information about programs under development is not limited to the 
compilation process. Part  of providing incremental semantics was building a database of 

3Cornpilatioa for targets otbcr tbaa tbc RlOOO may involve more than tbeec thrw states. 

B.2.5.3 



declaration-level dependency information sufficient, in conjunction with the DIANA 
trees, to determine the legality and impact of incremental changes. This information 
turm out to be enerally useful. For installed Ada units, the relationships between 

naming (use clauses, renaming declarations, overloading), it isn't possible, much less 
desirable, to keep track of these relationships on the basis of the program text. Using 
the compilation dependmcy information, these relationships can be checked 
interactively. 
Dciinifion is the name of an operation to show the declarations of an object that is 
referencedpmewhere in an Ada unit. As typically used, the user points to the reference 
of interest and presses the key to provide its definition. The declaration of the object 
referenced is brought onto the screen in the context of its Ada unit. It is also possible to 
r i d  the implementation of the declaration. Definition is very useful in refreshing 
familiar code in the user's mind; it is invaluable in understanding unfamiliar code. A 
generalization of this mechanism to all system objects is the basic command for visiting 
objects of any type, traversing the directory structure, and changing context. 
Show Ueuge is the name of the operation that goes in the opposite direction: it provides 
the s e t o f  references shared by a declaration, a form of interactive cross-reference. If 
only one unit references the declaration, the referencing unit is brought onto the screen 
with each of the references underlined in a way that it is easy to traverse from one 
marked reference to the next. Where multiple units reference the declaration, a menu of 
units is present and the definition operation applied to any of the menu entries brings up 
a marked image of the indicated unit. Show Usage runs in time proportional to the 
number of firstlevel references, typically a second or two. It is an invaluable aid in 
determining the impact of an anticipated change. 

S.S. Ada Command Language 

Conventional systems typically provide some sort of command shell that executes 
progruma, specially prepared and loaded collections of units that can be executed from 
the command shell. These procedures must either live in a simplified world without 
parameter passing or understand l o w  to read arguments from the command line. Then, 
if a normal procedure wants to call one of these programs, it is necessary to understand 
how to invoke a shell and construct the parameters as if they were being p w e d  in from 
the shell. 
In the Rational Environment, any coded visible subprogram can be executed simply by 
calling it, provided that the closure of uni ts  required by Ada rules is also coded. This 
hea a profound effect on the accessibility of code for execution and testing. By unifying 
the shell program interface to use the normal Ada parameter mechanisms, the interface 
is made 6 0 t h  simpler and more powerful. 
One salient improvement is the ability to use the richness of Ada semantics. This ability 
to reference the declarations in Ada units isn't limited to procedures and functions; it 
extends to all Ada declarations: types, objects, constants, generics. The advantages that 
Ada h a s  for the expression of application designs are available for the specification of the 
system interface or user-written utilities. This generality has far-reaching implications 
on the appearance, usage, and implementation of the system. References to procedures 
with complicated parameter profiles can be expressed using the name notation, 
parameter defaulting, and overloading. Interfaces to predefined packages, e.g., 

a 
declarations and t % eir uses is a matter of great interest. Given the rich structure of Ada 

0 

'It in ab0 possible to type its name if tbere is no immediate occurrence to point to. 0 
B.2.5.4 



Text IO, are just easily invoked as commands to create files, using the same 
interfice. 
The  full ower of Ada is important to making the command interface work. An Ada- 
like inter P ace that is limited to normal command-style entries might seem an attractive 
tradeoff between generality and implementation effort, but closer inspection reveals the 
limitations of this strategy. Cutting isolated features from any language is a treacherous 
undertaking. abstract 

turns out to be quite useful. This usefulness, in turn, depends on the ability to rovide 

The command interface is an Ada declare block into which the user typically enters a 
single procedure call that is executed. In the eneral case, it is possible to write complete 

is then com iled, and code is generated and executed. The completeness of the facility 

interface L Ada, it is strongly typed; it benefits from detection of errors during 
compilation rather than during execution; syntactic and semantic completion are 
provided. 

As a simple example, private types are useful for providin 
interfaces to system functionality, and having private types in the comman 8; interface 

function results as parameters and, in many cases, to make them default reasonab P y. 

Ada programs using tasks, generics, or any ot gh er Adafonstruct in this block. The block 

is often exp P oited in learning Ada and determining .what would happen if ..:. Since the 

S.4. Editor-Based User Interface 

All interactions with the Rational Environment are through a general, object-oriented, 
multi-window editor. At one level, the editor provides familiar .what you see is what  
you get. on the images corresponding to the objects being edited or viewed. The text of 
the images can be modified directly using character, word, and line operations; portions 
of images can be copied or moved to other locations in the same or dilferent images; 
there is a general search/replace interface. All of these capabilities allow the user to 
view and modify objects in a human-readable form: text. 
Many of the various types of objects in tbe system, most notably Ada, are stored in more 
interesting data structures than text. To support the transition from text editing to 
object representation, the editor supports an incremental change, parse, pretty pr in t  
cycle. Changes to the text are saved for processing by typespecific editors that 
understand the syntax of the particular object. The changes are processed by the 
incremental parser to create consistent object structures. As necessary, the revised data 
structures are reflected onto the image with any corrections or embellishments that are 
deemed appropriate by the editor for the type. A typespecific editor, called an object 
editor,  is available for each of the main object types. AU of these implement similar 
editing cycles, but the operations, grammar, and semantics for Ada, discussed below, are 
the most interesting. 
The actual operations provided for editing an object are logically separated into three 
classes: image operations, common object operations, and typespecific operations. Image 
operations are the outer-level, character-oriented operations; these are the same for all 
object types. Common operations are those that are expected to be available for all 
object types, but depend on the  characteristics of the type; these include edit, structural 
selection, detail control, and various state transformations. Typespecific operations are 
provided by some types of objects where the characteristics of the type require additional 
functionality. Creating an object is typespecific. 

0 

5Tbere is a special fast patb provided for a common subset of known procedures for which no code L 
generated. Thin covers about 80% of the command executions. Users are typically unaware of which 
path a particular command takes. 

B.2.5.5 



A simple, but commonly used, object editor is the one provided for the subclass of files 
corresponding to text. Its use with Ties, whether created by the editor or written by 
programs with Text IO, is fairly conventional but benefits from tbe ability to select 
text from other objec't types for inclusion in documents, mail, or bu reports. The text 

for interactively executed programs. In this mode, the userhss full access to the7eatures 
of the editor in providing input to programs and scanning their output, either while they 
are running or long after they have completed. 

One of the features of the editor interface is that it doesn't impose any particular 
interaction sequence on its users. As a result, it is possible to  freely switch between 
objects being edited and executing programs. The input required by an executing 
pro am can be provided by copying the text from another object or from a previous r u n  

kept current with the values of the underlying objects, including (optionally) scrolling 
windows into which program output is being generated. This makes it convenient, for 
instance, to maintain a window on a long-running command to monitor its progress while 
continuing to get work done on something else. 

3.6. Ada EdStSng 

Ada wm designed to allow the specification and construction of complex systems that 
could be read, understood, and maintained. A person has  to write the programs, 
preferably using the expressive capabilities that will serve well throughout the life of the 
code. The purpose of the Ada object editor is to make the writing m easy as possible. 
By understanding the syntax of Ada, the editor is able to provide interactive syntax 
checking and completion. Syntactic completion is based on the notion that many tokens 
in the syntax are redundant; providing the additional tokens is only marginally harder 
than detecting their absence. For instance, most of the structures of Ada syntax are 
signaled by keywords or punctuation that bracket constructs; e.g., the existence of the  
keyword i /  implies the futurc cxistcnce of end i /  and at  least one statement in between. 
The editor uses this information to provide the keyword structure and, if required, 
prompts for the expression and statement portions of the statement. The result is 
logically very similar to operations provided by syntax-directed editors, but is 
stylistically similar to normal text editing and only enforces syntactic correctness at user- 
specified points in the editing process. Used frequently, the program can be kept 
syntactically correct; when necessary, wholesale editing can take place without incurring 
checking overhead until the changes are believed to be complete. Prompts are presented 
in a special font and obligingly disappear when typed over, providing convenient 
reminders of code still to be written. Any attempt to execute a prompt raises an 
exception. 
A less frequently used, but powerful form of syntactic completion is prjvided to 
construct skeletal bodies for the  visible operations of a unit. Completion saves typing 
the same procedure headers in both the visible part and the body. A related operation 
creates a private part with prompted completions for each of the private types in the 
package. 
The logical extension of syntactic completion is  ema an lie complefion. Semantic 
completion fills out the contents of expressions, most commonly subprogram calls or 
aggregates, in a manner analogous to the way syntactic completion fills in the structural 
parts of the language. When making an incremental change in an installed or coded 
unit, it is possible to enter part of an expression, typically a procedure or function call, 
and request that the system fil l  in the parameter profile with prompts for parameters 

object editor is also responsible for dealing with Standard Input au ! Standard Output 

of t r e same program. To support multiple concurrent activities, all visible windows are 

B.2.5.6 



without defaults. In doing so, the system will provide the full name-notation 
presentation of the call, supporting goad stylistic use of the language without requiring 
the user to do the additional typing. 

SA.  Debugging 
The Rational Environment sup rta debugging in the same spirit as the other parts of 
the programming recess. DeEgging a program is just like running it without the 
debugger, except t E at a different -executem key is used. No special preparations are 
required to set programs up to be debugged. Debugging is not intrusive: two people can 
be debugging the same program at the same t h e  without getting in each other s way. 
Interaction with the debugger is at the source level. Program locations are displayed by 
bringing up the Ada image of the statement and highlighting it. Variables and 
parameters can be displayed by selecting them and pressing the -Put. key or by 
entering a command with the name of the desired variable. The value displayed is 
presented as it would appear in program source: record values are printed as aggregates 
with field names; enumeration values are printed as the appropriate enumeration literal. 

3.7. HostTarget Support 

Although the RlOOO provides an attractive environment for the execution of Ada 
programs, the system was designed to support the develo ment of programs that would 
run on other targets, not to be a target itself. With t i e exception of the execution 
interface, the system provides all of the facilities described for target development. 
Editing and compilation appear the same for .other targets as for the R1000. Indeed, the 
target being compiled for is a declarative property of the library and affects the content, 
but not the form, of the basic operations. Since we don’t expect that Rational will 
supply code generators for every possible target, there is a general compilation interface 
that captures target dependencies in installation and coding, without user intervention. 
Execution and debugging are less easily specified, but the debugger architecture includes 
support for the same set of operations on targets connected by communication lines a9 
for native RlOOO programs. There is also provision for targetspecific debugging 
operations in a manner analogous to that used by the editor to provide typespecific 
operations. A variant of this hosttarget strategy was used successfully in debugging the 
Environment in its early stages. 

8.8. Confignratlon Management m d  Version Control 

Supporting an objectoriented view of Ada units implies support for configuration 
management and version control within the same integrated context. Previous 
experience with research environments suggested that programs need not be files, but all 
of these efforts focused on lone developers on rototype systems, not teams producing a 

version control from compilation; this separation is impractical without compromising 
compilation, completion, and other facilities. 
A separate, but related, problem that arises in a large system is control over the 
configuration to be compiled and executed. Early experience showed that the 
connectivity of a large Ada system the environment itself) makes it attractive to break 

before being used by another. Simply executed, this strategy provides some relief, but it 
still strains compilation resources at  integration points. This strain was especially 
bothersome, since integration took place during a prototyping stage when long delays in 
re in t egr a t ion were u n d esi r a b 1 e. 

product. Conventional systems solve the pro Fl lem by separating program storage and 

the system up into subsystems to alow I changes in one part of the system to be tested 

B.2.5.7 



The wlution to this configuration problem was to structure subsystems to have the 
uivalent of visible parts and bodies. Subsystem interfaces, a subset of the vlsible units 1 the subsystem, provide the correspondent of visible parts. The complete set of units 

corresponds to the body of the subsystem. As with Ada units, the contract made by the 
visible art must be fulfilled by the body, but the implementation of the body can be 

of incremental change of visible parts within a subs stern is that of upwardzompalible 
changer. Upward-compatible changes are additiona r declarations that can be added to 
the rubsystem interfaces such that references corn iled against a version of the interface 
without the new declarations will continue to wor!, but new code can start to reference 
them. 
One very effective additio to the subsystem technology wm the ability to hide the 
private parts of packages? Private parts are instrumental in providing abstract 
utterfaces whose underlying implementation can be changed without rewriting 
referencing code. This extension makes it possible to change the representation without 
recompiling, just 89 if the completion of the type were in the body. For our code, this 
capability was particularly useful. It is common to have a package that exports private 
types whose completions are types exported from instantiation(s) of generics that are 
only referenced for this purpose. Closing the private part makes it unnecessary for the  
interface to appear to wa'fh the package exporting either the generics or the types 
involved. Reducing the wifh closure reduces the size of the interface while reinforcing 
the spirit of abstract interfaces. 
This ability to compose a system of compatible subsystem that have not been directly 
compiled together greatly facilitates integration, especially since the wurance  of 
semantic integrity is not lost. It does not directly address the version control problem, 
but leads to a version control policy based on a series of viewe - configurations of the 
entire subsystem library, each spawned from the previous version of the view. 
Experience with these mechanisms and experience with the compilation system have lcd 
to the construction of a more sophisticated form of view that combines the advantages of 
subsystems, reservation-model .source. management, and differential storage of changes 
to provide a facility that effectively combines the best of conventional version control 
with the advantages of subsystems for forming configurations. By managing views for 
the user, it is possible to provide support for these various forms of multiplicity in such a 
way that there seems to be more than one version only when differentibting 
configurations is part of the work at hand. 

8.9. Llfo-Cycle Support and Extensibility 

The goal of the Rational Environment is to support all of the life-cycle activities 
involved in software development. The initial implementation effort has !mused on 
support for detailed design through maintenance and on building an environment that is 
conducive to extending these facilities into other parts of the lire cycle. Our experience 
h a s  been that Ada, by itself, provides a useful basis for program design, especially where 
it is possible to compile the designs and trace through the dependencies. 
Many of the facilities that make the Environment attractive for programming also make 
it attractive for tool development and use. The access tc DLANA and semantic 
information holds out the promise of building toob to analyze program and and their 
deveJopment. The ability to construqt interactive, editor-based interfaces has proved 

change B without recompilation of clients of the visible part. An extension to the notion 

~ ~~~ 

GThc RlOOO architeclurc provides efficient aupport for tbia form of truly private type. 

8.2.5.8 



attractive and has helped in the process of providing useful interfaces for interesting 
funetionolity. 

4. Experience 
The Rational Environment itself consists of about 800,OOO linea of Ada. Development of 
the Environment also required building about 700,OoO linea of Ada to rovide cross- 

(simulators, translators, analysis programs). The product was first shipped to customers 

performance, increased functionality, and improved robustness) have been delivered since 
then. 
This development has provided considerable experience in the use of Ada with modern 
software engineering practices. This experience can be summarized by the following 
statements: 

development tools (compilers, debuggem) and hardware/microccde rleve P opmen t tools 

0 ID February of 1985. Several significant upgrades (involving greatly improved 

1. Adoption of Ada and the software engineering practices referenced earlier has 
been somewhat more difficult than anticipated. Significant investment in 
tools, training, and experience has been required. 

2. The benefits are very real. Improvements in productivity and quality have 
been evident in all phases of development: design, implementation, 
integration, test, and maintenance. 

4.1. Early Ada Experlence 

In 1981 and early 1982, a series of programs were constructed: development and 
simulation tools and prototypes of high-risk components of the Environment. These 
typically consisted of 50.100K lines of Ada. 
Ada proved to be an excellent language for applying the concepts of information hiding, 
data abstraction, and hierarchical decomposition based on levels of abstraction. The 
basic package mechanism, separation of specification and implementation, and private 
types allowed rapid construction and modification of large, modular programs. 

Ada cannot force good design, but it does capture and clarify the decomposition and 
connectivity of programs, allowing early detection and correction of architectural flaws 
in the design. Ada became our primary design tool, particularly for detail design. With 
experience, we were able to produce high-quality designs quite rapidly. 
The interaction between sernah tic checking and modularity produced significant 
improvements in productivity. Using modularity and type structure to capture design 
information increased somewhat the time required to first execute the program, but it 
also greatly increased the chances that the f i t  execution would be productive. New 
arrivals frequently complain that they aren't ever going to get the program to compile, 
only to come back later amazed that it worked the f i t  time. When problem did arise 
at  runtime, constraint checking allowed the errors to be detected early in execution. A 
common, effective debugging strategy is to run the program until an unexpected 
exception occurs; the problem is often evident with no additional information. Even 
when this is not the cme, the modularity of most programs reduces uncertainty about 
interactions and allows much more rapid isolation of errors. It is also much easier to 
reason about the structure of program and predict the consequences of a change. 

B.2.5.9 



Early experience also showed that all these wonderful benefits were not free. Ada 
semantic analysb is very expensive, increasing compilation timea significantly relative to 
other languages. The  early detection of interface and typesafety errors was 
handicap ed by the use of batch compilation technology to report these errors. This 
confirme B our belief that an interactive environment for Ada with support for 
incremental compilation would greatly improve productivity. 

4.B. LUgbSC818 Development and Integration 

In 1983 and 1984, the development focus at Rational shifted from developing program 
consisting 9f 10-100 packages to incrementally constructing and integrating a complete 
system made up of 30-40 subsystems, where each subsystem wm the size of one of the 
earlier programs. 
The system was decomposed hierarchically into five major layers, with each layer 
consisting of 5-8 subsystems. Although there were significant structural and interface 
changes over the life of the project, the basic architecture w a  surprisingly stable. This 
architecture allowed considerable parallelism in the overall development process and was 
instrumental in the evolution of our understanding of the configuration management and 
version control issues in developing large Ada system. 
At a very early point, the components of the system (or skeletons of the components 
were integrated into a complete system. 
functionality, but allowed the basic architecture to be .debugged. before the entire 
system was constructed. This integration allowed system design issues such m storage 
management, concurrency, and error handling to be add:essed very early in the 
development process. Early integration also served to stabilize major interfaces. 
Development of the individual subsystems proceeded in parallel, with periodic 
integration to provide a new baseline for further development. The use of hierarchical 
decomposition allowed enough independence for development to proceed in parallel, 
while providing tight interface control to minimize integration problem. It was this 
integration process that led to the evolution of the subsystem concepts and supporting 
tools described in section 3.8. 

The combination of the Ada language with objectoriented design techniques, tool 
support for integrating configuration management and compilation management, and an 
incremental integration strategy proved very effective for this particular project. 

4.8. Maintenance 

The Rational Environment has been in field use for about 16 months in multiple releases. 
Supporting it has provided some limited insight into the maintenance phase of a large 
Ada system. At Rational, maintenance is the responsibility of the original development 
team; it was crucial that new development proceed in parallel with maintenance without 
significant increase in development staffing. 

Our ex erience has indicated that Ada's greatest value may be in maintenance. In this 
particu P ar case, rnainfenance included bug fixes and minor enhancements, addition of 
major new functionality, redesign and reimplementation of several subsystems to 
improve performance, and reorganization of parts of the user interface. Since initial 
product introduction, not only has it been possible to provide desired new functionality, 
but reliability and robustness have improved and overall system performance has  been 
increased by at  least a factor of 3. 

Efforts to improve performance are interesting examples of both the power and the 

e 

This initial system had very limite d 

0 

B.2.5.10 



. 

associated dangers of modularity and abstraction. up a large system in 

(Ada generics). There were several cases where performancecritical sections of w d e  
were operating through generics in multiple layers of the E stem, where a much farter 

completely redone and integrated into the system without major disruption, Abstraction 
is not an end in itself, but used carefully, it  can help produce reliable, maintainable 
software to meet performance constraints. 

4.4. Experience Udng the Rational Environment 

Bringin 
minimum time wbs greatly facilitated by abstract interfaces an B the ability to reuse code 

implementation was possible. Ironical1 , the same modu T arity and abstraction that 
introduced the problems contributed to t II e solution of the problems: these sections were 

t 

. 
Our experience using the Rational Environment has confvmed those advantages we 
foresaw when we started the project. Interactive syntactic and semantic information 
makes a tremendous difference in the ease of constructing program and making changes 
to them. The  ability to follow semantic references makes it easier to understand existing 
programs and the impact of changes. The integrated debukger makes it much easier to 
find bugs and test l i e s  quickly. Taken together, these facdities have helped greatly in 
reducing the impact of ongoing maintenance on our ability to produce new code. We 
anticipate similar improvements as we achieve the same level of integration and 
interactivity for configuration management and version control. 
The Environment has also proved useful in introducing new ersonnel to the project and 
existing personnel to new parts of the system. New ersonne v benefit from the assistance 

the structure of unfamiliar software. It is often possible for someone completely 
unfamiliar with a body of code to use these facilities to understand it well enough to 
successfully diagnose and Ti bugs in a matter of minutes. 

with syntax and semantics; everyone benefits from t i e ability to traverse and understand 

0 
Acknowledgmenb 

The design and implementation of the Rational Environment was a group effort 
involving too many people to mention individually. Each member of the team 
contributed invaluable ideas, effort, and experience. It haa been a challenging, 
rewarding, and enjoyable process. 

B.2.5.11 



References 

1. ReJerenee Manual j o t  the Ada Popromming Langucge. Washington, D.C., 1983. e 
United States Department of Defense. 

3. J.E. Archer, Jr. The Design and Implementation of a Cooperafive hogram 
Devchpment Environment, Ph.D. Th., Cornell University, August 1981. 

8. M. Barbacci, A. Habermann, and M. Shsw. 'The Software Engineering Institute: 
Bridging Practice and Potential.. IEEE So/twore e, 8 (November 1985), 4-21. 

4. 0-J. Dah1 and K. Nygaard. 'SIMULA - An Algol-Based Simulation Language'. 
Comm. ACM Q, 9 (September 1966). 

6. D.L. Punas .  .On the Criteria to Be Used in Decomposing Systems into Modules'. 
Comm. ACM I5,3 (December 1972). 

8.  A. Evans, K. Butler, G. Goos, W. Wulf. DIANA Reference Manual. TL  83-4, 
Tartan Laboratories, Pittsburgh, Pa., 1983. 

7. L. Druffel, S. Redwine, and W. Riddle. 'The STARS Program: Overview and 
Rationale.. IEEE Compufcr IS, 11 (November 1983), 21-29. 

8. J. Ichbiah. 'Rationale for the Design of the Ada Programming Language.. 
SICPtAN Nofices 14, 6 (June 1979). Part  B. 
0. B. Liskov, and S. Zilles. 'Specification Techniques for Data Abstractions'. IEEE 
Trans. on Sojfware Eng. SE-I (March 1975). 

IO. M. McIlroy. Mass-produced Software Components. In Sojfware Enpineen'ng 
Concepts and Techniques, NATO Conference on Software Engineering, 1969. 

11. T. Standish and T. Taylor. Initial Thoughts on Rapid Programming Techniques. 
Proceedings of the Rapid Prototyping Conference, Columbia, MD, April, 1982. 

12. tieqtlirerneiifo for Ada fiopra-nming Support Enw'ronmenfs (Sfoneman). 
W8shington, D.C., 1880. United States Department of Defense. 

13. W. Teitelman. A Display Oriented Programmer's Assistant. CSL77-3, Xerox 
PARC, 1977. 

14. R.T. Teitlebaum and R. Reps. The Cornell Program Synthesizer: A Syntax- 
Directed Programming Environment. 79-370, Cornell University, Department of 
Computer Science, 1879. 

16. T. Wilcox and H. Larsen. The Interactive and Incremental Compilation of Ada 
Using DIANA. Rational, Mountain View, CA. 

10. R. Yeh. 'Survey of Software Practices in Industry.. IEEE Cornpuler 17, 6 (June 
1084). 

B.2.5.12 


